
Proceedings of the 4th International CDIO Conference, Hoogeschool Gent, Gent, Belgium, June 16-19, 2008 

A Software Engineering Program Using the CDIO Framework 

David C Levy,  
School of Electrical and Information Engineering 

The University of Sydney 
dlevy@ee.usyd.edu.au 

Abstract 
The new Software Engineering degree program being implemented in 2008 has been 
designed as a collaborative effort between the School of Electrical and Information 
Engineering and the School of IT at the University of Sydney.  The design of the new 
curriculum is based on the ACS, ACM and IEEE curriculum recommendations and the 
Software Engineering Body of Knowledge (SWEBOK), as well as the results of a detailed 
industry review. Close attention was paid to Computing Curriculum 2001 (CC2001) and to 
Software Engineering 2004 (SE2004). The CDIO framework was used to ensure the new 
program incorporates the full set of knowledge, skills and attitudes that students should 
possess as they graduate from university. This paper gives an overview of the curriculum and 
follows by describing two of the design-build experiences used in the first year introduction 
to engineering course and the final year capstone project 
 
Keywords 
CDIO, curriculum design, design-build experiences 

Introduction 
The new Software Engineering degree program being implemented in 2008 has been 
designed as a collaborative effort between the School of Electrical and Information 
Engineering and the School of IT at the University of Sydney.  

The design of the new curriculum is informed by the ACS, ACM and IEEE curriculum 
recommendations and the Software Engineering Body of Knowledge (SWEBOK), as well as 
the results of a detailed industry review. Close attention was paid to Computing Curriculum 
2001 (CC2001) and to Software Engineering 2004 (SE2004). The CDIO framework was used 
to ensure the new program incorporates the full set of knowledge, skills and attitudes that 
students should possess as they graduate from university. The aim is to achieve a program 
that is consonant with:  

“The application of a systematic, disciplined, quantifiable approach to the development, 
operation, and maintenance of software; that is, the application of engineering to 
software.” (IEEE) 

The philosophy of the degree program is to produce graduates who combine a high level of 
software skills with the design approach inculcated by an Engineering education and who 
will be able to apply engineering principles to the problem of managing complexity in the 
design of large software systems, ranging from global scale distributed enterprise networks to 
embedded systems, including components of software, systems, telecommunications and 
engineering management. Typical graduates might lead the development of complex software 
applications in specialist areas such as banking and insurance, telecommunications, real-time 



Proceedings of the 4th International CDIO Conference, Hoogeschool Gent, Gent, Belgium, June 16-19, 2008 

systems, multimedia and industrial control, bringing to bear skills in disciplined engineering 
design and a systems engineering approach.  

 This paper discusses how the University of Sydney’s Software Engineering program 
addresses the accreditation requirements of Engineers Australia and equips graduates with the 
knowledge base necessary to achieve the above, as well as the generic attributes required by 
industry and academia. This paper gives an overview of the curriculum and follows by 
describing two of the design-build experiences used in the first year introduction to 
engineering course and the final year capstone project 

The Design of the Curriculum 
In designing the curriculum, we had to maintain alignment with the Engineers Australia (EA) 
accreditation criteria. These required that the program include personal, interpersonal and 
professional skills very close to those of CDIO. For the technical content, EA follows the 
SE2004 program guidelines and the major areas set out in the SWEBOK. There are 14 of 
these, covering Computer Organization and Architecture, through Data Communications and 
Networks to Software Project Management and Quality Assurance. 

Core outcomes of the degree 
The units of study that make up the core are chosen to provide graduates with the 
fundamentals of: 

• sciences, technologies and  engineering, 
• software development and programming language skills, 
• software systems life-cycle, product requirements, software project management, 
• an introduction to hardware platforms and devices: processor architecture, interfacing, 

digital systems, 
• an introduction to computer networks and data communications technologies, 
• engineering design and management, 
• a set of generic graduate attributes common to all engineering graduates and 
• the opportunity to specialize in a software application domain. 

Graduate attributes 
The Software Engineering program endeavors to inculcate its graduates with the following 
generic graduate attributes: 

• Research and Inquiry - Graduates of the program will be able to create new 
knowledge and understanding through the process of research and inquiry. 

• Information Literacy - Graduates of the program will be able to use information 
effectively in a range of contexts. 

• Personal and Intellectual Autonomy - Graduates of the program will be able to work 
independently and sustainably, in a way that is informed by openness, curiosity and a 
desire to meet new challenges. 

• Ethical, Social and Professional Understanding - Graduates of the program will hold 
personal values and beliefs consistent with their role as responsible members of local, 
national, international and professional communities. 

• Communication - Graduates of the program will recognize and value communication 
as a tool for negotiating and creating new understanding, interacting with others, and 
furthering their own learning. 

Further details of the Faculty of Engineering’s view of graduate attributes are available on the 
website http://www.itl.usyd.edu.au/graduateAttributes/facultyGA.cfm?faculty=Engineering 



Proceedings of the 4th International CDIO Conference, Hoogeschool Gent, Gent, Belgium, June 16-19, 2008 

Allocation of credits. 
In the University of Sydney structure, each unit of study is worth 6 credit points, and the 
normal load for one semester is 24 credits, i.e. 4 units. Thus an 8-semester program is worth 
192 credits. In our program, we keep the core load below 144 credits to allow for several 
options of specialization and combined degrees. 
 

CORE 1st 
Year 

2nd 
Year 

3rd 
Year 

4th 
Year Total 

MATH 12 6 - - 18 
IT 12 30 24 6 72 
ELECTRICAL ENG 12 - 12 18 42 
TOTAL CORE 36 36 30 24 132 
RECOMMENDED ELECTIVES 12 12 6 12 36 
FREE ELECTIVES - - 6 12 18 

Electives and streams 
The recommended electives consist of 42 credit points  taken from a table of engineering and 
computing topics, allowing students to tailor their degree, for example to include a full stream 
of e-business or of networking or embedded systems. There are several specialization streams 
and units available to students. These include, among others, multimedia, real-time and 
embedded systems, information systems, enterprise systems, e-business technology and 
security.  

Combined Degree Courses 
The BE SE program has been designed to permit students to undertake combined degree 
courses of Bachelor of Engineering in Software Engineering with the Bachelor of Science, 
Bachelor of Arts, Bachelor of Medical Science, Bachelor of Commerce or Bachelor of Laws 
over a period of 5 years, leading to the award of two degrees. 

Alignment with IEEE-CS/ACM SE2004 
The new curriculum is based on the Software Engineering curriculum developed by a joint 
task force sponsored by the IEEE Computer Society and the Association for Computing 
Machinery. Their work is described in the document “Software Engineering 2004 Curriculum 
Guidelines for Undergraduate Degree Programs in Software Engineering” available at: 
http://sites.computer.org/ccse/SE2004Volume.pdf 
 
The SE2004 task force developed a Software Engineering Education Knowledge base or 
SEEK made up of ten knowledge areas: Computing Essentials, Mathematical & Engineering 
Fundamentals, Professional Practice, Software Modeling & Analysis, Software Design, 
Software Verification & Validation, Software Evolution, Software Process, Software Quality, 
and Software Management. Each of these knowledge areas is further refined to individual 
topics with their relevance (essential/desirable/optional).  These topics may easily be groups 
under the CDIO headings. 
 
The new University of Sydney Software Engineering curriculum includes all the essential 
topics from SE2004. A complete listing of the SEEK codes and their topic, a list of Units of 
Study in the new curriculum and a mapping between the units and the essential SEEK codes 
is available from the author 



Proceedings of the 4th International CDIO Conference, Hoogeschool Gent, Gent, Belgium, June 16-19, 2008 

Our approach 
In view of the above, our approach was to list the SE2004 core program components and then 
group them into a set of core units of study. This gave rise to a set of 15 core units, all worth 
6 credit points except for the thesis project: 

INFO1103 Introduction to Programming 
INFO1105 Data Structures 1 
ELEC1601 Foundations of Computer Systems 
ENGG1805 Professional Engineering and IT 
COMP2007 Algorithms and Complexity 
INFO2120 Database Systems 1 
INFO2315 Intro to IT Security 
COMP2129 Operating Systems and Machine Principles  
INFO2110  Systems Analysis and Modeling 
INFO3315  Human Computer Interface Design 
INFO3402  Management of IT Projects 
INFO3220  Object Oriented Design 
ELEC3609 Internet Software Platforms 
COMP3615  3rd year SE Team Project 
ELEC4707  4th year SE Research Project 
ELEC5618  Software Quality Engineering 
COMP5348  Enterprise Scale Software Development 

Alignment with CDIO 

Conceive 
Conceiving of software systems is dealt with in several ways. In the team projects in years 1, 
3 and 4 students are expected to brainstorm and then refine their ideas by applying 
fundamental mathematical, abstraction and modeling skills. Mathematical thinking prepares 
students for all stages of system development from design to the correctness of the final 
implementation [ACM Communications, September 2003]. 
 
There is thus a strong focus on mathematics during the first year (12 credit points), along 
with foundation units in Software, Computer Engineering and the Engineering Profession. In 
second year a full unit of discrete mathematics and graph theory is offered.  Software 
abstraction and modeling skills are developed in most units, particularly in INFO2110 
System Analysis and Modeling. In the electives, students may study domain specific 
modeling in depth, for example in ELEC5614 Real Time Computing. 

Software Design 
A core issue in CDIO is that of Design, and this is dealt in the program in INFO1103 
Introduction to Programming, INFO1105 Data Structures and INFO3220 Object Oriented 
Design which build students’ skills in software development, covering object-oriented 
software development with design-by-contract, which is the state-of-the-art in industry. 
Students are then expected to use these skills in the team project in 3rd year and the research 
project in 4th year. Part of the design process includes Software Risk Analysis, which is dealt 
with in depth in INFO2110 System Analysis and Modeling. ELEC5618 Software Quality 
Engineering addresses risk as an essential issue in any software project.  



Proceedings of the 4th International CDIO Conference, Hoogeschool Gent, Gent, Belgium, June 16-19, 2008 

Software Implementation 
Implementation issues are addressed in INFO1103 Introduction to Programming and 
INFO1105 Data Structures in first year, and then at increasingly advanced levels in the later 
years to considerations of large scale systems in COMP5348 Enterprise Scale Software 
Development. Domain specific implementation issues are considered in recommended 
electives such as Real-time Computing and Multimedia. A key part of the implementation 
process is Software Testing, Verification, Validation and Quality Assurance 

These topics are addressed in INFO2110 System Analysis and Modeling, the Software 
Design units and ELEC5618 Software Quality Engineering. The concepts are reinforced in 
all the software development units and students are required to demonstrate their skill in this 
area in the software project. 

Operate 
Software operation requires installation, configuration and maintenance. Maintenance of 
large software projects can be very expensive, consuming more resources than the C, D and I 
phases combined. These issues are addressed in INFO3402 Management of IT Projects, 
ELEC5618 Software Quality Engineering and COMP5348 Enterprise Scale Software 
Development. INFO3402 is taught by a team of industry professionals.  

Team Projects and Problem-based Learning 
Although the software engineering process is treated specifically in INFO3402 Management 
of IT Projects, it is instilled in students from the word go in all relevant units. Problem-based 
learning is used, in conjunction with increasingly demanding projects, to introduce design-
by-contract, refactoring, good abstractions, high-level terms including pre- and post-
conditions, ability to produce a design with appropriate information-hiding, evaluation of the 
quality of a design, verification and validation, etc. Students are expected to display all of 
these skills in the 3rd year team project and in the 4th year engineering project. 
 
Starting in first year, in ENGG1805 and ELEC1601, students work in small groups, so they 
experience many of the issues of team interaction that are important in practice. Also, 
students take responsibility for planning their own learning to meet required objectives, so 
they will develop skills to learn from resources including reference materials and examples. 
As the program progresses, students undertake more advanced projects in the advanced 
elective units of study, leading to a full team-based project in 3rd year and a research-based 
thesis project in the final year.  
 
In ELEC1601, students working in groups design and build a small system using a generative 
programming environment. A typical example might be a system to perform a remote data 
sensing and testing task using LabVIEW, wireless networking and a remote sensor. The 
application will emulate an industrial remote sensing application, e.g. to monitor the health of 
an oyster farm.  

In COMP3615, the 3rd year software development team project, students will apply the 
knowledge and practice the skills acquired in the prerequisite and qualifying units, in the 
context of designing and building a substantial software development system in diverse 
application domains including life sciences. Working in groups they will need to carry out the 
full range of activities including requirements capture, analysis and design, coding, testing 
and documentation.  



Proceedings of the 4th International CDIO Conference, Hoogeschool Gent, Gent, Belgium, June 16-19, 2008 

The program is designed so that in every stream, every student will undertake a capstone 
project in 4th year, which may be associated with a specialized area such as Real Time 
Computing, in which teams may tackle a project like a traffic tool plaza with booths, auto-
debit transponders and photo capture, or a controller for some type of industrial machine such 
as a carpet cleaning system. 

Every student must also tackle a final research project, either individually or as a team. In the 
research project, students bring together all the wealth of knowledge gained over the previous 
3 years. A wide range of topics are made available to the students, and they are also 
encouraged to suggest their own topics.  

 The outcomes of the final thesis comprise a working piece of software or system, along with 
a project report, typically of around 50 pages, including details of the project management 
and a 15 minute presentation. The best 30 are then also presented at the School’s annual open 
day, to which many local industrial and commercial enterprises are invited. 

Conclusion 
The SE program provides a strong, up-to-date curriculum that is relevant to the needs of 
Australian Industry and meets the recommendations of EA/ACS, IEEE/ACM SE2004 and 
SWEBOK. It follows the CDIO framework and provides students ample opportunities to 
develop core skills, to specialize and to test their abilities in a series of projects that demand 
increasing capabilities through the four years of the program. 
 
 


