

# 5<sup>th</sup> International CDIO Conference



Reframing Engineering Education: Impact and Future Direction Singapore Polytechnic, Singapore June 7 – 10, 2009

# IMPLEMENTATION AND EFFICACY OF ACTIVE LEARNING STRATEGIES IN ENGINEERING MATHEMATICS

By Dr Charlie McCartan School of Mechanical & Aerospace Engineering Queen's University Belfast N. Ireland June 9<sup>th</sup> 2009

## **Teaching Engineering Maths!**





How?

What are we going to do?



### **Summary of Presentation**

#### Introduction

- Rationale
- Existing Year 1 Mathematics
   Provision

# **2<sup>nd</sup> Year Mathematics Module Preparation**

- Rationale
- Objectives
- Content

2<sup>nd</sup> Year Mathematics
Module Efficacy

- Assessment Results
- Student Feedback

**Conclusions** 



- CDIO Collaborator since 2003
- Partway through plan to implement
   CDIO
  - established BEng and MEng programs
  - New Product Design program
- Product Design Program has different entrance requirements
  - LESS MATHS!
- Mathematics module at Stage 1 on PD program
  - ONLY formal tuition

Rationale



# Mathematics for Product Design: Year 1 Module



# Mathematics for Product Design: Year 1 Module Preparation



Module integrates with rest of course

Learning Strategies

Relevance/Applications

Keep students motivated and engaged

Developed using best current pedagogical practices

# Overview of Year 1 Mathematics Module



### Module Evaluation – 'Assessment is Key'

#### Rust

"if work does not have marks attached many students will either not do it at all or only do it in a perfunctory way"

#### **Gibbs**

"assessment works best to support learning when a series of conditions are met"

..... "what influenced students most was not the teaching but the assessment" However...

# More was needed!



# 2nd Year Engineering Mathematics Module Preparation

**RATIONALE** 

**Active learning sessions** 

Homework/tutorial sheets

**Examination** 

Second diagnostic test



# Rationale for 2nd Year Engineering Mathematics Module

#### Diagnostic Test - Student Performance per Question



# **Objectives** for 2nd Year Engineering Mathematics Module

- Provide more practice in the mathematical methods presented in the first year course.
- Promote a deeper learning environment.
- Emphasise the relevance of mathematics to the PDD degree.
- Develop other non-disciplinary skills relevant to the CDIO syllabus.

# Again...

best current pedagogical practices researched and applied

# **Content** for 2nd Year Engineering Mathematics Module



#### **Analytical Design Assignments in MS Excel**

- 3 Simulation Assignments clearly defined, realistic design problems
- Continual feedback
- Promotes Deeper Learning
- Develops Personal, Interpersonal & Professional Skills

### 2nd Year Engineering Mathematics Module **Efficacy**

# Did it Work?

**Assessment Results | Student Feedback** 



## 2nd Year Engineering Mathematics Module Assessment Results









## 2nd Year Engineering Mathematics Module Student Feedback

#### **Student Module Evaluation**

#### **Questionnaire**

- students clearly satisfied with:
  - the module contents
  - the teaching methods
  - the assessment methods
  - the feedback
  - the lecturer's contributions to their learning
- The results indicated a satisfaction level of over 90% for all aspects of the module

#### **Formative Feedback**

- Please indicate the most satisfying aspect(s) of this module
- Please indicate the least satisfying aspect(s) of this module



#### **Conclusions**

- New 2<sup>nd</sup> year mathematics module succeeded in motivating and engaging the students all passed!
- Very positive formative feedback in relation to the CAL, CAA and real life simulation assignments.
- Such an active and interactive learning environment involves the students in the learning process
- Students' understanding of basic concepts can be improved through Computer Aided Learning (CAL),
   Computer Assisted Assessment (CAA) and realistic simulation assignments.
- It provides students with a flexible learning medium.
- It provides the opportunity to offer constant feedback to individual students.
- It also provides instant feedback to the instructor enabling immediate and focused support for the students.

- Such two-way feedback helps develop and tailor the course.
- It provides an enjoyable and constructive
   learning environment which fosters a more
   positive attitude towards learning
   mathematics



# **QUESTIONS**

