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ABSTRACT 
 
We describe an online tutorial that was developed in order to support first year engineering 
students' learning about mathematical induction (MI). The tutorial integrates theoretical 
explanations, examples and interactive reflective questions, and was designed to increase 
students’ engagement by creating frequent interactions and using a varied collection of 
reflective questions. The tutorial was developed according to research-based knowledge 
concerning students’ difficulties with MI and considering global vs. local proof comprehension. 
We examined the effects of the MI tutorial on the following students’ achievements: (i) students’ 
grade in the final quiz of the tutorial (FTG); (ii) students’ grade in the MI question in the final 
exam of the course. We collected students’ initial/final quiz-grades (ITG, FTG), the time 
students worked on the tutorial, the number of final quiz trials and students’ grades in the MI 
question in the final exam in five semesters (before/after incorporating the tutorial). Our findings 
indicate that the mean FTG is significantly higher than the mean ITG (e.g., in the first semester, 
N=152, mean ITG=34.5; mean FTG=73.2). Apparently, the instructional part of the tutorial had 
a positive short-term effect on students’ FTG. However, we did not find a major effect of the 
MI tutorial on students’ grade in the MI exam question (regardless of the type of claims to be 
proved and other circumstantial exam settings). We also found that most students answer the 
MI question in the exam, which may suggest that students believe that they understand the 
use of MI; yet, their mean grade in this question is not very high (51.7-68.8). In addition, a 
change in course policy (including the FTG in the course’s final grade), motivated students to 
achieve a high FTG but the time that students worked on the tutorial decreased, which may 
explain the lack of long-term effect. 
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BACKGROUND 
 
Mathematics is considered a fundamental subject in engineering education, since mathematical skills 
involve logical thinking, problem solving abilities and enable high achievements in other engineering 
subjects; In addition low performance in mathematical courses inhabit an academic risk and influence 
students' motivation (González et al., 2020). 
 
There is an increasing interest in mathematics teaching practices at the tertiary level and in 
alternative approaches to mathematics teaching other than lecturing. Few of the subjects that 
are being studied are teaching and learning of mathematical proofs, effective ways of teaching 
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mathematics to non-mathematics students and students’ use of online resources (Biza et al., 
2016).In addition, scholars are contemplating about different forms of assessment of students’ 
knowledge and what type of performances should be confirmed in the assessment 
(Bennedsen, 2021). The use of online assessment is another strand of investigation that is 
gaining more attention, in particular in recent times (e..g., Pick and Cole, 2021). 
 
In this paper, we describe an online tutorial developed by two of the authors, designed to help 
first year engineering students learning about proof by mathematical induction (MI), and 
discuss the effects that the MI online tutorial had on different aspects of students’ 
achievements and learning. 
 
Teaching and learning proof at the tertiary level  
 
Research has identified a vast list of cognitive difficulties related to proving at all levels, 
including the tertiary level, for example: a lack of acquaintance with proving strategies, 
difficulties with mathematical language and notation, knowing how to work with mathematical 
definitions and understanding the logical structure of a proof (Selden & Selden, 2008, 2013). 
Non-mathematics students are expected to improve their proof constructing ability throughout 
their mathematics courses, which focus on a deep understanding of mathematical content but 
not necessarily on the concept of proof itself (Selden & Selden, 2008). Researchers have also 
been giving growing attention to affective aspects that influence the learning of mathematics, 
acknowledging their strong effect on students’ proving process and problem solving abilities 
(Selden & Selden, 2013). In spite of these difficulties, there is an agreement among 
mathematics education researchers and mathematics lecturers that reasoning and proving are 
central both to knowledge construction and to the establishment of a mathematical community 
in the classroom. Research about teaching proof at the tertiary level did not yet accomplish a 
solid corpus of well-established ways for proof teaching, but a few approaches were suggested 
and studied in the literature. We focus here on two such approaches. 
 
Firstly, Alcock (2009) designed a computer-based presentation of proofs called ‘e-proofs’, 
aimed to make the proof’s structure and reasoning more explicit and visible to students. An e-
proof comprised of a set of slides, showing a theorem and its complete proof, accompanied 
with audio commentary containing explanations similar to those a lecturer would give in a 
frontal lecture. Alcock et al. (2015) compared the effects of e-proofs with two other proof 
presentations (a frontal lecture, written proof) on undergraduate students’ proof 
comprehension and found that although students liked e-proofs and perceived them as helpful, 
e-proofs were less desirable than textbook proofs or frontal lecture in terms of proof 
understanding. Alcock et al. speculated that e-proofs helped students’ on-spot understanding 
without investing too much effort, which caused the lesser sustainability of their understanding. 
In fact, Alcock (2009) related to similar concerns stating that although e-proofs allow the 
teacher to better articulate their own understanding of a proof, students’ interactivity is low and 
is mainly expressed by controlling pace and order of content. Alcock et al. further concluded 
that students’ self-explanation training improves both students’ mathematical reading and 
proof comprehension. 
 
The second approach is the ‘proof framework’ instruction (Selden & Selden, 2013), designed 
to help students develop proof competencies. The term ‘proof framework’ relates to the formal-
rhetorical part of the final written proof, which depends on unpacking and using the logical 
structure of the statement of the theorem, associated definitions, and earlier results. Selden 
and Selden let students prepare proof frameworks, leaving blanks in the proofs that should be 
filled with mathematical problem-solving content, and claim that writing such frameworks “… 
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not only improves their proof writing… but also… can reveal the nature of the problem(s) to be 
solved…” (p. 309). Selden and Selden reported that although constructing proof frameworks 
might be challenging for students with little experience in proof writing, after practice it can 
become routine and improve students’ proof writing according to accepted community norms.  
 
Stylianides and Stylianides (2017) asserted that although mathematics education research 
identified many difficulties in teaching and learning proof and suggested alternative 
pedagogical methods, less research focused on designing interventions and examining their 
effects on learning proof; they recommend applying research-based interventions in the 
mathematics classroom, or in any other formal learning setting. However, how can one assess 
the effect of such an intervention on students’ proof comprehension? Mejia-Ramos et al. (2012) 
presented an assessment model for undergraduate students’ proof comprehension, which may 
be used to design assessment instruments of students’ proof understanding, as well as to 
evaluate the effectiveness of a specific mathematics instruction. The model addresses local 
and global proof comprehension. Local proof comprehension relates, for example, to 
understanding a specific statement and how it connects to a small number of other statements, 
the definition of terms and identifying the specific data supporting a claim. Global proof 
comprehension relates, for example, to the proof as a whole entity, and to aspects such as 
being able to reflect on main ideas, breaking the proof into modules and identifying the logical 
relation between them, applying the method of the proof in other contexts and choosing 
suitable illustrative examples. 
  
Teaching and learning mathematical induction 
 
Mathematical induction (MI) is a proving method frequently employed by mathematicians. 
There are different formulations of proof by MI and we use the following: Suppose one wishes 

to prove a conjecture that a statement ( )P n  holds for all n N . Proof by MI has three steps: 

i. The inductive base: prove that ( )P 1 holds; 

ii. The inductive assumption: assume ( )P k holds for some k N ; 

iii. The inductive step: prove that ( ) ( )P k P k +1 . 

The conclusion is that ( )P n  holds for all n N .  

 
The pedagogical importance of teaching and learning MI in secondary school and in college 
was already discussed by Young (1908), who claimed that “the process of mathematical 
induction is exceptionally well fitted to introduce the beginner to the philosophic study of 
mathematical thinking” (p. 146). More than a century later, Stylianides et al. (2016) investigated 
the explanatory potential of proving by MI and suggested that “the explanatory power of proving 
by mathematical induction can help students develop their understanding of … mathematical 
ideas,…, ideas about proof, or both” (p. 23). Engineering students learn MI as part of their 
basic mathematical education, since in addition to being a fundamental and powerful proving 
method, it develops the logical thinking required for engineering and develops students’ ability 
to work with sequences, particularly recursive sequences. This is true for all engineering 
students but bears particular importance for software engineering students, as Gunderson 
(2010) explains: “…because of the recent explosion of knowledge in combinatorics, computing, 
and discrete mathematics, mathematical induction is now, more than ever, critical in 
education…The theory of recursion in computing science is practically the study of 
mathematical induction applied to algorithms. The theory of mathematical logic and model 
theory rests entirely on mathematical induction, as does set theory... mathematical induction 
is absolutely essential in linear algebra, probability theory, modelling, and analysis…” (p. xix).    
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However, researchers have documented many difficulties that students encounter while 
learning MI, and we refer to a few main ones. Firstly, students think that MI is a circular proof 
in which they assume what they are trying to prove; this reflects a deep misunderstanding of 
the structure of proof by MI (Ernest, 1984). Secondly, many university students believe that 
proof by MI is a technical and superficial way of proving and do not understand the structure 
of the proof, in particular that the inductive base and the inductive step are independent and 
are both necessary for a valid proof (Movshovitz-Hadar, 1993; Ron & Dreyfus, 2004; 
Stylianides, Sandefur & Watson, 2016). Finally, students do not perceive MI as a natural 
development of their previous mathematical experience but as detached from other topics 
(Ernest, 1984). In order to tackle some of these difficulties, mathematics educators offered 
various recommendations, for example using cognitive conflict to stress the necessity and 
independence of the inductive base and the inductive step (Ernest,  1984; Movshovitz-Hadar, 
1993) or using models such as the Domino tiles model (Ron & Dreyfus,  2004).  
 
 
RATIONALE AND OBJECTIVES 
 
We situate our work within the growing research field concerned with mathematics teaching 
practices at the tertiary level, in particular online tutorials that support the teaching of proof.  
Our research is an intervention, aimed to examine the effects of a specially designed online 
tutorial about MI on students’ learning. MI was chosen because in spite of its centrality as a 
proving method in mathematics, it is usually not taught in secondary mathematics and most of 
our engineering students encounter it for the first time. In addition, MI has a clear structure or 
‘proof framework’ (Selden & Selden, 2013), and there is vast established knowledge about 
students’ difficulties with MI.  
 
The online MI tutorial started with a quiz and proceeded with an instructional part containing 
theoretical explanations, examples and interactive reflective questions designed to support 
global and local proof comprehension (Mejia-Ramos et al., 2017) and to increase students’ 
involvement. The tutorial ended with a quiz and the students received a final tutorial grade 
(FTG). 
 
The objectives of the study presented here are to examine the effects of the instructional part 
of the MI tutorial on students’ FTG and on students’ grade in the MI question in the final exam 
of the course. 
 
 
METHOD 
 
The study was conducted in a discrete mathematics course, taken by Software engineering 
students and Industrial engineering students in an Engineering college in Israel. The course is 
taken by students in their first year of studies. As stated above, most students did not learn 
proof by MI in high-school; all students use MI in other courses (e.g., Calculus). In the course, 
MI is taught in a frontal lesson (3 hours). The lesson was supported by an online tutorial 
designed and programmed (using Articulate Storyline - an application used to build interactive 
online courses) by two lecturers of the course. The tutorial starts with a quiz that is graded 
(ITG), but the students do not get the grade or any feedback. It proceeds with an elaborated 
instructional part, and ends with a final quiz, identical to the initial one, which the students can 
repeat, receive feedback and a final tutorial grade (FTG). The initial/final quiz contains 10 
questions that relate to global and local comprehension of proof by MI. 
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The instructional part of the tutorial is divided into sections, some contain theoretical 
explanations about MI together with examples and some MI proofs of different types of claims 
(algebraic, geometric). Figure 1 presents a scheme of the MI tutorial. The tutorial is interactive; 
students answer different types of reflective questions (e.g., typing algebraic expressions, 
multiple-choice, dragging expressions), that require global or local proof comprehension; the 
tutorial continues when students answer correctly. Students can also return to a previous 
section using a side content.  
 

 

Figure 1: A schematic representation of the MI tutorial 

 
Figure 2 presents an example of two tutorial screens containing global/local questions. The 
students have to complete the tutorial at home in their own pace, as long as they complete it 
before the end of the semester. 
 

  

Figure 2: Examples for reflective questions (left/right – local/global comprehension) 

 
Every final exam in discrete mathematics course includes a question (or part of a question) 
about proof by MI and the students have a choice of overall 5 of 6 questions. We collected 
data from two semesters before the incorporation of the MI tutorial in the course (Sem-BT1, 
Sem-BT2) and three semesters after the MI tutorial was incorporated as a mandatory activity 
in the course (Sem-T, Sem-TG1, Sem-TG2). In Sem-T the students were simply required to 
finish the tutorial before the final exam. In Sem-TG1/Sem-TG2 the FTG was incorporated in 
the final grade of the course (range 0-100): the students received 2.5 points in the final grade 
of the course, only if FTG ≥60.  
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We collected students’ grades in the MI question in all five semesters. In the semesters that 
the MI tutorial was incorporated, we collected students’ grades in initial and final tutorial 
quizzes (ITG/FTG), the time that students worked on the tutorial and the number of final quiz 
trials. Table 1 presents the MI final exam questions in each semester. 
 

Table 1: Final exam MI questions 
 

Semester MI question in the final exam 

Sem-BT1 Prove by MI that for any n N , 
n n+ −4 15 1 is divisible by 9  

Sem-BT2 Prove by MI that for any n N , 
( )n

k

n
k

=

+


3
2

1

1

3
  

Sem-T 

We will prove by MI that , ...n N
n n

  + + + +  −
2

1 1 1 1
1 2

4 9
 

(a) Check the inductive base; 
(b) Write explicitly the inductive assumption and what is needed to prove in 

order to show that the inductive step holds; 
(c) Prove the inductive step; 
(d) Write explicitly the conclusion; 

(e) prove that , ...n N
n

  + + + + 
2

1 1 1
1 2

4 9
; 

(f) Can the claim in (e) be proven by MI? Please explain. 

Sem-TG1 Prove by MI that 
( )

, ( )
n

j

n n
n N j

=

−
  − =

2
2

1

4 1
2 1

3
 

Sem-TG2 Prove by MI that , n nn N + −  +1 2 14 5 is divisible by 21  

 
 
FINDINGS 
 
Students' achievements in MI tutorial  
 
Table 2 (below) presents the mean of students’ grades in the initial/final quiz (ITG/FTG) in 
three semesters. The two columns on the right present the percentage of students who 
repeated the tutorial, where the term ‘successful repeating students’ (the last column on the 
right) relates to students that their first FTG was ≥ 60 but repeated the tutorial nevertheless. 
 
We considered data of students with FTG; we omitted data of students with FTG=0 where the 
time they worked on the tutorial was less than 2 minutes or more than two hours. Mean time 
was calculated for students that worked on the tutorial and completed the first trial of the quiz 
in less than 2 hours.  
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Table 2: Tutorial grades and other tutorial parameters (SD = Standard deviation) 

 

 

ITG 

Mean 
(SD) 

FTG 
Mean 
(SD) 

First trial 

FTG 

Mean (SD) 

Highest trial 

Mean 

time of 

first trial 

[min.] 

Mean 

number 

of trials 

% of 

repeating 

students 

% of 

successful 

repeating 

students 

Sem-T 

(N=152) 

34.54 

(20.3) 

73.2 

(18.3) 

74.47 

(18.8) 
42.41 1.05 4 4 

Sem-TG1 

(N=186) 

38.06 

(20.2) 

65.54 

(23.6) 

82.26 

(16.5) 
30:28 1.51 41 13 

Sem-TG2 

(N=169) 

36.09 

(21.9) 

53.31 

(34.3) 

85.56 

(15.9) 
26:03 1.89 56 9 

 
 
Students' achievements in final exam 
 
Table 3 presents the MI question grade statistics and the percentage of students that answered 
the MI exam question in each semester. In Sem-T* we calculated mean grade for items a-d of 
the MI question (omitting the grades of items e-f), so that the question is more similar to MI 
exam questions in other semesters (Table 1) and the grades will be more comparable. The 
separate grades of items a-f are presented in Table 5. 
 

Table 3: Students' grade (0-100) in MI question in final exam (SD = Standard deviation) 
 

 
Sem-BT1 

(N=113, 72%) 

Sem-BT2 

(N=137, 94%) 

Sem-T* 

(N=159, 92%) 

Sem-TG1 

(N=171, 96%) 

Sem-TG2 

(N=145, 95%) 

Mean (SD) 51.7 (34.1) 68.8 (29.2) 60 (27.2) 63.3 (23.5) 67.6 (36.8) 

Median 40 80 55 66.7 100 

 
In order to investigate further the relation between students’ first/highest FTG and students’ 
grade in the MI final exam question we calculated the correlations between these grades, as 
presented in Table 4. We regarded only to grades of students who have a FTG and answered 
the MI exam question.  
 

Table 4: Correlation between first/highest tutorial grade and grade in MI exam question 
 

 Sem-T (N=124) Sem-TG2 (N=153) Sem-TG1(N=138) 

Correlation -0.01 / 0.04 0.19/ -0.1  -0.07 / -0.01 

 
Finally, Table 5 presents students’ grades in items a-f in the MI exam question in Sem-T (see 
items a-f in Table 1).  

902



 

Proceedings of the 18th International CDIO Conference, hosted by Reykjavik University, Reykjavik Iceland, June 
13-15, 2022.  

Table 5: Students' mean grade breakdown (0-100) in MI question in final exam in Sem-T 
 

N=159 
a 

(base) 
b 

(assumption) 
c 

(step) 
d 

(conclusion) 
e 

(consequence) 
f (proof 

comprehension) 

Mean 

grade 
90.57 63.52 51.70 64.15 44.65 24.21 

 
 
DISCUSSION  
 
Our first objective was to study the effects of the instructional part of the MI tutorial on students’ 
final tutorial grade (FTG). Table 2 demonstrates that the mean FTG after the first trial of the 
final quiz is significantly higher than the mean ITG. It seems that the instructional part of the 
MI tutorial had a very positive effect on students’ FTG. The other tutorial parameters that we 
examined (Table 2) demonstrate that the mean time for completing the tutorial and the mean 
FTG after first trial decreased; the mean highest FTG as well as the mean of number of trials 
increased. There is also a big gap between the percentage of students who repeated the 
tutorial in Sem-T and Sem-TG1/Sem-TG2. In other words, in Sem-TG1 and Sem-TG2 students 
spent less time on their first trial of the tutorial, their first FTG decreased, but they repeated the 
final quiz until they achieved a higher FTG. We suspect that this is a result of the change in 
course grading policy, for as explained above in Sem-TG1 and Sem-TG2 the course grading 
policy changed and the FTG became an ingredient in the final grade, probably motivating 
students to achieve higher FTG. However, Table 2 also demonstrates that in all the semesters 
there were students that repeated the tutorial even though they already gained a passing grade, 
i.e their first FTG was ≥ 60. This happened regardless of the fact that the FTG itself was not 
part of the course’s grade (as explained above students received 2.5 points in the final grade 
of the course if FTG ≥60). This may point to high motivation of these students and a high level 
of engagement with the tutorial. Pick and Cole (2021) report similar phenomenon in their study, 
concerning students that attempted to increase their score even after a pass mark had been 
achieved. If this is a feature of using online tutorials and quizzes – it is a very positive one, and 
should be further investigated. 
 
Our second objective was to study the effect of the MI tutorial on students’ grade in the MI 
exam questions. Table 3 does not demonstrate a clear effect of the MI tutorial neither on the 
mean nor on the median in the MI question. In fact, we did not detect any clear trend in the 
grades of the MI question along the five semesters. Of course, one should consider the 
difference in the type of claims to be proved (sum, division, etc.), the questions’ type 
(with/without division into items) and even who the grader of the question was (the exams are 
checked each semester by a different lecturer). In addition, some of the semesters in which 
the data was collected were during the Covid-19 pandemic so the external circumstances 
varied from semester to semester (class exams, home exams). If we examine students’ grades 
in Sem-BT1 and Sem-TG2, in which the exam questions were very similar (proving claims 
about division properties), the data shows that the mean and median grade are higher in Sem-
TG2 but it is difficult to deduce that the increase was a result of the incorporation of the MI 
tutorial. The data in Table 4 supports the lack of a major effect of the MI tutorial on students’ 
grade in the MI exam question. Nevertheless, Table 3 reflects that the percentage of students 
that choose to answer the MI question is high in all semesters (in 4 of 5 semesters it exceeds 
90%). This suggests that students possess high beliefs concerning their ability to prove claims 
using MI, in spite of the fact that their mean grade is not very high (51.7-68.8). This supports 
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research that asserted that students (at various levels) perceive proof by MI as a series of 
technical manipulations and do not possess a deep understanding of the structure and logic 
of MI (e.g., Ron & Dreyfus, 1994). 
 
In order to consider other effects of the MI tutorial we relate to the MI exam question in Sem-
T. Items a-d of the question resembled MI questions in other final exams; items e-f required 
less procedural understanding and involved meta-mathematical thinking. Table 4 
demonstrates that students encountered difficulties especially in item c and in items e-f. Based 
on our experience, the difficulties in item c had mainly a technical nature and concern 
performing algebraic manipulations. Yet, the grades in items e-f indicate that students were 
unable to deduce a direct conclusion from the claim they have just proved; they were also 
unable to explain why they cannot use MI to prove a slightly different claim, where such an 
explanation requires local proof comprehension of the MI proof they have just performed in 
items a-d. In that sense, it seems that the MI tutorial did not support profound long-term proof 
comprehension. Granted, the MI tutorial did not focus on enhancing students’ understanding 
of such subtleties. We consider this a matter for future research, in particular how to improve 
the tutorial to support deeper students’ understanding. 
 
 
CONCLUSIONS 
 
To conclude, one aim of the MI tutorial was to teach students how to construct and write a 
correct MI proof, in the sense that they will be able to construct a correct ‘proof 
framework’ )Selden & Selden, 2013). It seems that the use of the MI tutorial had a positive 
effect on short-term students’ grades (FTG) but no clear effect on their MI exam question grade. 
This finding is similar to what Alcock et al. (2015) called the ‘on-spot’ effect of e-proofs, which 
Alcock (2009) regarded a consequence of students’ relatively passive learning. The design of 
the MI tutorial presented in this paper took this into account and encouraged students’ activity 
by creating frequent interactions and using a varied collection of reflective questions, yet we 
did not notice a clear positive effect of the MI tutorial on students’ achievements in the MI exam 
question. Thus, our main pedagogical conclusion is that relying solely on an online tutorial to 
address students’ difficulties with MI is an unrealistic expectation and that the online tutorial 
cannot replace a discussion in a frontal lecture.  
 
However, we still did not address possible effects of the MI tutorial on affective aspects of 
learning, such as learning experience or motivation and on their learning habits. In our study, 
we have overall positive feedback from students regarding these aspects, in concurrence with 
other studies that examine the use of online learning materials and quizzes, e.g., Pick and 
Cole (2021), who report students' high satisfaction with online quizzes. González et al. (2020) 
found that developing metacognition skills, time management and study habits help students 
to overcome challenges in their engineering studies and concluded that engaging engineering 
students in new learning spaces supports the development of these skills. Mathematical online 
tutorials, as the MI tutorial we discuss, are an example of such new learning spaces. Yet, 
reaching established conclusions on this matter requires further research. 
 
Other future research directions concern the effects of flipping the MI lesson: replacing the 
frontal lecture by using the MI tutorial as a self-study unit, discussing MI in class and repeating 
the study while maintaining higher standardization (e.g., regarding exam questions and 
grading policy). We believe that as Stylianides and Stylianides (2017) recommended, 
intervention studies are an important source for gaining information of effective teaching 
methods, especially in times when online teaching is becoming more common.  
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