
Proceedings of the 15th International CDIO Conference, Aarhus University,
Aarhus, Denmark, June 25 – 27, 2019.

AN ADAPTIVE ALGORITHM FOR LEARNING COMPUTER
PROGRAMMING COURSE

Deachrut Jaithavil

Department of Computer Engineering, Rajamangala University of Technology Thanyaburi, Thailand

Natha Kuptasthien

Department of Industrial Engineering, Rajamangala University of Technology Thanyaburi, Thailand

ABSTRACT

This paper aims to compare active learning and passive learning in a Computer Programming
course for the 1st year engineering students. The CDIO standard 7 and 8 was implemented to
change teaching methods. The students were divided into two classes. An active learning
environment was provided for Class A, while Class B was offered a passive learning classroom
environment. The passive learning included a lecture and computer-based materials.
Meanwhile, the active learning class focused on designing activities that were suitable for the
expected learning outcomes and whether students understood the concept behind
programming. Active learning activities were designed to assure students’ learning outcomes
from remembering and understanding to applying the knowledge in computer programming.
To develop a deeper understanding, the students practiced the algorithms using interactive
programs. To improve the thinking process, visual block-based programming language in form
of a jigsaw puzzle was introduced. Each specific block has a different color, which can be
dragged together to build applications that creates different possible outcomes. Later on, the
student applies their knowledge of programming languages to electronic devices that use
sensors and microcontrollers, which translates analog input into a software system that
controls electro-mechanical devices such as motors, servo, lighting or other hardware. This
last phase has engaged students in applying, analyzing, and evaluating ideas with text-based
programming language based on active experiential learning. Both classes were evaluated
based on their pre-test and post-test performances. The independent sample t-test result found
that the outcomes of Class A students were statistically significantly higher than the Class B
students at the 0.05 level of significance. It encouraged the instructor to further develop the
course, regarding the visual block-based programming language, the text-based programming
language, problem-solving skills and other necessary skills.

KEYWORDS

Visual block-based programming, computer algorithms, computer engineering, standards: 7,
8.

Proceedings of the 15th International CDIO Conference, Aarhus University,
Aarhus, Denmark, June 25 – 27, 2019.

INTRODUCTION

Extreme modifications in the tertiary education system require the university to improve the
quality of education. Several new curriculums are designed to support a more diverse range
of students. State-of-the-art infrastructures and technology are able to enhance learning
experiences. However, the university pedagogy remains challenged, with most lecturers still
use lecture-based practices. The assessment of student competency relies on how students
solve exercises and textbook problems (Vega et al., 2013).

This situation also occurs in the Computer Programming course at the faculty of engineering,
Rajamangala University of Technology (RMUTT), Thailand. This course is offered to all new
1st year students entering all of the engineering disciplines. The course covers computer
concepts, computer components, hardware and software interaction, electronic data
processing concepts, program design, development methodology and high-level language
programming. The teaching team found that non-programming engineering students did not
fully understand the content due to the increasing level of difficulty in recent years. The topics
that the students struggled with the most with was program design and development
methodology, problem-solving, and algorithm. The student's feedback results reveal that the
main issues interfering with their learning were the heavy lectures with minimal activities to
provide students experiences that shape their understanding of the content. Berglund and
Persson (2018) stated a similar situation where computer programming is perceived as
theoretical, abstract, and complicated with less connection to real-world application, especially
for non-programming engineering students.

In order to solve the mentioned problems and encourage non-programming engineering
students to gain a deeper level of understanding and achievable learning experience, the
lecturer applies Integrated Learning Experiences (CDIO standard 7) and Active Learning
(CDIO standard 8) techniques. Thus, this paper aims to:

● Design appropriate activities that support students learning experiences and increasing
levels of interest in learning computer programming.

● Compare learning outcomes between an active learning and passive learning groups
of 1st year non-programming engineering students

EARLIER WORKS

Computer literacy education becomes crucial for younger learners in this decade. Many
primary and secondary schools worldwide integrate the knowledge of RFID cards, radar
ranging, smart street lights, intelligent traffic lights, remote control, game programming, scratch
programming and Arduino in educating young learners to experience basic computer
programming (Yongqiang et al., 2018). Computational thinking is an essential problem-solving
technique that involves logical, algorithmic processes and reasoning abilities. Computational
thinking is regularly brought up in the context of learning computer programming. Wing (2006)
has developed key principles of computational thinking, as shown below:

● Decomposition: divide the problems into a small portion
● Pattern Recognition: observe the similarities and differences of sequences, formats or

steps
● Abstraction: select format, apply problem solving process, trial-and-error
● Algorithmic Thinking: create a solution with systematic problem-solving skills and

reasoning.

Proceedings of the 15th International CDIO Conference, Aarhus University,
Aarhus, Denmark, June 25 – 27, 2019.

There are several examples of literature that focuses on teaching and learning 1st year students
and computer programming. Siong and Thow (2017) succeeded in raising students’ motivation
by using a “learning-by-doing” approach for the 1st year digital electronic course. The inquiry
and reflection process allows the student to develop a better understanding of the concept.
Deep learning in experimentation, discussion in seminar group, 3D-model software to develop
physical products and programming exercises show a promising approach to motivate non-
programming engineering students in the introductory 1st year course (Berglund and Persson,
2018). Shorn (2018) stated that the student found computer programming courses boring,
time-consuming and difficult. Gamification, an application of gaming elements in a non-game
context, was used. Positive results show that the methodology can support students’ learning
and gains more interest in learning computer programming.

Among many applications on teaching computer programming, Scratch-Arduino is a highly
effective tool to teach logical thinking and creativity. The S4A (Scratch 4 Arduino) provides a
high-level user interface with simple and interactive functions. Thus, the S4A platform is
appealing to novice programmers (Gupta et al., Hladik et al., 2017; Roscoe et al., 2014;
Tangney et al., 2010).

RESEARCH METHODOLOGY

The research question is “Is there any differences in computational skills between Class A
(active learning with a visual block-based programming language) and Class B (passive
learning with text-based programming language)?”

The author applies the Tyler model along with Behaviorism and Constructivism theories in
designing the Computer Programming course. Tyler model (Tyler, 1967), is an essential theory
of curriculum development in the scientific approach. With four steps:

1. Determine the objectives course or learning outcomes
2. Identify educational experiences related to the purpose
3. Organize the experiences
4. Evaluate the purposes

Nature of Course and Requirements

The Computer Programming course grants 3 credits to 1st year engineering students from
different engineering disciplines and is mandatory for all engineering majors. The students are
diverse in backgrounds, prior knowledge in programming, skills and interests. A semester
contains 16 weeks of lessons, midterm and final examinations. Each week, the lesson
comprises of a 2-hour lecture and 3-hour practical exercises. The normal class size is 40
students.

Participants

An active learning classroom environment was provided for Class A (an experimental group),
while Class B (a control group) was offered a passive learning classroom environment. The
active learning class focused on activities designed to be suitable for the expected learning
outcomes and to check whether the student fully understands the concept behind
programming. The passive learning environment included a traditional lecture and computer-
based materials. The experiment was conducted using purposive sampling of registered

Proceedings of the 15th International CDIO Conference, Aarhus University,
Aarhus, Denmark, June 25 – 27, 2019.

students in the course of semester 1 in the 2018 academic year (June - October 2018). Class
A (an experimental group) had 39 students, while Class B (a control group) had 38 students.

Assessing Learning Achievement and Data analysis

An assessment tool was a test including 50 multiple-choice questions (50 points). The
students’ pre-test and post-test results were used to assess and determine the student learning
achievement. The pre-test was conducted in week 2, while the post-test was in week 11 of
the semester. The questions covered the program design and development methodology of
algorithm concepts with flowcharts, which were validated by all the lecturers in the course. A
quantitative analysis was performed using an independent sample t-test with a confidence
level of 95%.

Intended Learning Outcomes

Intended learning outcomes (ILOs) are set as shown in Table 1. The students are expected
to achieve these following outcomes after finishing this course.

Table 1. Learning outcomes for 1st year computer programming course

ILO1 To understand the concept of problem solving
ILO2 To understand steps in an algorithm development
ILO3 To understand the concept of an Algorithm
ILO4 To understand the concept of a Flowchart development

Designing a Course Syllabus

A 16-week course syllabus was designed, as shown in Table 2. The authors applied a
Constructive Alignment theory (Biggs and Tang, 2007) to design classroom activities that focus
on developing the student’s logical and creative thinking skills, engineering reasoning and
problem-solving skills. The designed activities must be aligned with the intended learning
outcomes.

Table 2. Course Syllabus

Week Topics
1 – 2 Introduction to Computer
3 – 6 Introduction to Problem Solving

● Procedure and Steps
● Algorithm
● Flow Chart
● Symbols used in Flow Charts
● Pseudo Code

7 – 8 Introduction to C Language
10 – 11 Control Structure
12 – 13 Function
14 – 15 Array

16 String

Proceedings of the 15th International CDIO Conference, Aarhus University,
Aarhus, Denmark, June 25 – 27, 2019.

Teaching & Learning Activities

Teaching and learning activities focused on developing professional skills with knowledge
construction rather than memorization. Table 3 shows 3 active learning activities offered to
Class A (an experimental group)

Table 3. Active learning activities

Activity Bloom Taxonomy Week Topics and Activity Details Practice
Hour

1 - Remembering
- Understanding

3 – 6 Introduction to Problem Solving
● Use a Flowgorithm program
● Drag and drop flow chart symbols to the

problems

8

2 - Understanding
- Applying

7 – 8 Introduction to C Language
● Use Scratch program which is a Visual

Block-based Programming Language to
create a simple game

4

3 - Analysing
- Evaluating
- Creating

10 – 11 Control Structure
● Use Scratch for Arduino program with

Electronic board (Arduino UNO)
● Control an LED circuit and small-sized

motor

4

Activity 1: Introduction to Problem Solving

Entering week 3, the topic was Introduction to Problem Solving, which covered the procedures
and steps in problem-solving. The students were expected to explain the algorithm with
workflow and the thinking process. The Pseudocode was used to show the sequencing in the
flowchart. Later on, the student-built up more understanding in the text-based programming
language. The Flowgorithm, an application that creates programs using simple flowcharts,
allowed the student to write and execute programs. It assisted the student in emphasizing on
the algorithm rather than the syntax of a specific programming language. Figure 1 shows a
screen capture of Flowgorithm. This activity expected students to review the meaning of
symbols used in the flowcharts, and 3 control structures; namely, structure sequence, structure
selection and structure repetition.

Proceedings of the 15th International CDIO Conference, Aarhus University,
Aarhus, Denmark, June 25 – 27, 2019.

Figure 1. Screen capture of Flowgorithm program
Activity 2: Introduction to C Language

During week 7-8, the topic was structured programming languages, preparing the students to
learn the text-based programming language. Once the students developed an understanding
of programming logic, it is relatively easy for them to start learning one of the major
programming languages. Thus, for the 2nd activity, a Scratch program was introduced to the
students. The visual block-based programming language allows the student to program their
own interactive stories, games, and animations. As a result, Scratch helps students engage
more in class and show good signs of creative thinking, systematic thinking, engineering
reasoning, and team collaboration. Figure 2 shows a screen capture of a Scratch program.

Figure 2. Screen capture of a Scratch program

Activity 3: Control Structure

For week 10-11, the students started using text-based programming languages. A majority of
the students had difficulty understanding this content due to the increased level of
complications and difficulties. This was the main cause of the students decreasing interest
and motivation for coding. In order to overcome those challenges, Scratch program for Arduino
board (S4A) was introduced to keep the students interested and motivated.

S4A is a Scratch modification that permits simple programming of the Arduino open-source
hardware platform, containing a new set of blocks for managing sensors and actuators. The
program itself can be connected to an Arduino microcontroller board which directly uploads
control codes through the USB socket. With these features, the students are able to do tasks
such as selecting blocks to turn on and off an LED light bulb and to rotate the servomotors.
Figure 3 shows a hands-on practice of a student using the S4A in an active learning lesson.

Proceedings of the 15th International CDIO Conference, Aarhus University,
Aarhus, Denmark, June 25 – 27, 2019.

Figure 3. Example of student in-class activity

RESULT

Statistical Test

The Class A (experimental group) and Class B (control group) students took a 50-multiple-
choice questions (50 points) pre-test on week 2. The same questions are used for the post-
test on week 11. The mean scores of both groups were compared and statistically tested by
an independent sample t-test with a confidence level of 95%.

Table 4. T-test for Equality of Means Pre-test for Class A and Class B

 N Mean S.D. Mean Difference t df Sig 1 tailed
Class A 39 8.18 3.88 0.42 0.501 75 0.309 Class B 38 7.76 3.40

From Table 4, the comparison between 2 groups from the pre-test results in week 2 shows
that Class A average score was 8.18, and Class B averaged 7.76. The mean difference was
0.42. The sig (1-tailed) value of 0.309 was > 0.05. Therefore, we accepted the null hypothesis
that there were no differences between Class A and Class B at the significant level of 0.05.

Table 5. T-test for Equality of Means Post-test for Class A and Class B

 N Mean S.D. Mean Difference t df Sig 1 tailed
Class A 39 23.36 7.01 4.37 3.004 75 0.002 Class B 38 18.63 6.79

From Table 5, the comparison between 2 groups from the post-test results in week 11 showed
that the mean score for Class A was 23.36 and 18.63 for Class B. The mean difference was
4.37. The sig (1-tailed) value of 0.002 was < 0.05. Therefore, the null hypothesis was rejected.

Proceedings of the 15th International CDIO Conference, Aarhus University,
Aarhus, Denmark, June 25 – 27, 2019.

We can conclude that the mean score of Class A was higher than the mean score of Class B
at the significant level of 0.05.
Student Feedback

At the end of the semester, the students gave feedback on their learning experience for the
computer programming class. Table 6 shows a contrary of feedbacks between Class A and
Class B students. The students in Class A that were offered active learning activities remained
their motivation throughout the semester and achieved the learning outcome, in the process
building a positive attitude towards the computer program. Meanwhile, Class B students
showed distress and difficulty in grasping the concepts of computer programming.

Table 6. Feedbacks from the students after the semester ended

Class A (experimental group) Feedback Class B (control group) Feedback
The activities help me understand with step-by-
step explanation from the teacher.

I didn’t understand what you taught.

The teacher did not rush when teaching. The
good pace helps me who is a slow learner
understand the subject.

The examination was very difficult

In the beginning, I didn’t like this subject at all.
Then, I understood and started to feel that it was
actually fun.

The teacher showed examples on the
screen. I had no clue what
programming is about.

DISCUSSION AND CONCLUSION

The design and development of active learning activities were based on the linkage of topics,
learning style, and learning outcome. The results of the study conclude that not only was the
expected learning outcomes achieved, but the student’s engagement and motivation were also
maintained throughout the entire semester. According to Leong et al. (2016), the motivation
that drives the students is directly affected and impacted by different settings: classroom
characteristics, pedagogical approaches, physical environments, collaborative teams, and
student autonomy. Students in the experiment group had experiences in a self-paced learning
based classroom, hands-on pedagogical methods, visual and physical devices (Scratch and
S4A) and an autonomous learning environment.

The research findings conclude that active learning activities can support the computational
thinking process for the students. The students have achieved the expected outcomes
including problem-solving and algorithm refining and reviewing, computational thinking,
flowcharts writing, coding and computer programming. The experimental group students were
satisfied with the course with positive attitudes and learning motivation towards computer
programming. This is similar to Vega et al. (2013) findings, where the students’ interests in
polished and attracting activities resulted in an increase of the student’s motivation. The visual
block-based programming in the active learning sessions alongside hands-on practices using
Flowgorithm, Scratch and S4A successfully supported the students in learning computer
programming, with paralleling to the results from Gupta et al. (2012), Roscoe et al. (2014) and
Tangney et al. (2010). Moreover, the level of student’s satisfaction and motivation was
pleasant, similarly to Siong and Thow (2017) findings that the learning-by-doing method can
enhance the students’ motivation.

Proceedings of the 15th International CDIO Conference, Aarhus University,
Aarhus, Denmark, June 25 – 27, 2019.

The effort of supporting the 1st year non-programming engineering students learning computer
programming was successful. The students had a positive attitude towards the course and
proved that it is not extremely challenging and can be enjoyable. The course can be applied
and extended to a larger scale, considering there are 10 faculty members who teach the
subject. However, the teacher should be able to observe and assess the student’s background
knowledge, as well as their willingness and eagerness to learn new things. Future work will
be the implementations of project-based approaches in the course. A programming contest
environment can drive challenges in promoting motivation and self-directed learning within
students.

REFERENCES

Anderson, L. W., Krathwohl, D. R. (2001). Bloom’s Taxonomy Revised: Understanding the New Version
of Bloom’s Taxonomy, obtained on 2013 from https://thesecondprinciple.com/teaching-
essentials/beyond-bloom-cognitive-taxonomy-revised/

Berglund, E., Persson, D. (2018). Turning Programming into a Relevant Topic for Nonprogramming
Engineers, Proceedings of the 14th International CDIO Conference, Kanazawa, Japan: Kanazawa
Institute of Technology, pp. 649-658.

Biggs, J. B., & Tang, C. (2011). Teaching for Quality Learning at University: What the Student Does.
Maidenhead: Society for Research into Higher Education & Open University Press.

Gupta, N., Tejovanth, N., Murthy, P. (2012). , Learning by Creating: Interactive Programming for Indian
High Schools, 2012 IEEE International Conference on Technology Enhanced Education (ICTEE),
Kerala, India.

Hladik, S., Behjat, L., Nygren, A. (2017). Modified CDIO Framework for Elementary Teacher Training in
Computational Thinking, Proceedings of the 13th International CDIO Conference. Calgary, Canada:
University of Calgary, pp. 581-594

Leong, H., Shaun, A., Singh, M. (2016). Enhancing Students Self-Directed Learning and Motivation,
Proceedings of the 12th International CDIO Conference, Turku, Finland: Turku University of Applied
Sciences.

Meikleham, A., Hugo, R., Brennan, R. (2018). Fluid Mechanics Project-Based Learning Kits: An Analysis
Of Implementation Results In A Blended Classroom. Proceedings of the 14th International CDIO
Conference, Kanazawa, Japan: Kanazawa Institute of Technology, pp. 649-658.

Ortega-Sanchez, C. (2014). Curtin Robotics Club: Conceiving, Designing, Implementing and Operating
Robots for Fun! Proceedings of the 10th International CDIO Conference, Barcelona, Catalonia, Spain:
Universitat Politècnica de Catalunya.

Roscoe, J.F., Fearn, S., Posey, E., (2014). Teaching Computational Thinking by Playing Games and
Building Robots, 2014 International Conference on Interactive Technologies and Games. Nottingham,
Nottinghamshire, United Kingdom.

Shorn, S. (2018). Teaching Computer Programming Using Gamification, Proceedings of the 14th
International CDIO Conference, Kanazawa, Japan: Kanazawa Institute of Technology, pp. 763-773.

Siong, G., Thow, Vivian. (2017). The Effect of Using “Learning-By-Doing” Approach on Students’
Motivation in Learning Digital Electronics, Proceedings of the 13th International CDIO Conference,
Calgary, Canada: University of Calgary, pp. 194-203.

Tangney, B., Oldham, E., Conneely, C., Barret, S., Lowler, J. (2010). Pedagogy and Processes for a
Computer Programming Outreach Workshop - The Bridge to College Model, IEEE Transactions On
Education, Vol. 53, No. 1, February 2010. pp. 53-60.

Tyler, R.W., Gagne, R.M., Scriven, M. (1967). Perspectives of Curriculum Evaluation. Chicago: Rand
McNally.

Vega, M., Morales, E., Munoz, J. (2012). Innovating in Teaching And Learning at First Year Of
Engineering, Proceedings of the 9th International CDIO Conference, Massachusetts Institute of

https://thesecondprinciple.com/teaching-essentials/beyond-bloom-cognitive-taxonomy-revised/
https://thesecondprinciple.com/teaching-essentials/beyond-bloom-cognitive-taxonomy-revised/

Proceedings of the 15th International CDIO Conference, Aarhus University,
Aarhus, Denmark, June 25 – 27, 2019.

Technology and the Harvard School of Engineering and Applied Sciences, Cambridge, Massachusetts,
USA.

Wing., J. (2006). Computational Thinking. Communications of the ACM, March 2006/Vol. 49, No. 3, 33-
35.

Yongquian, C., Xiaojun, W., Chengbin, Q. (2018). Computer Programming Education for Primary
School Students, Proceeding of the 13th International Conference on Computer Sciences & Education,
Colombo, Sri Lanka, pp. 163-167.

BIOGRAPHICAL INFORMATION

Natha Kuptasthien is currently as assistant to president for International Relations and an
associate professor at the industrial engineering department, faculty of engineering, RMUTT.
She led a full CDIO implementation at RMUTT since 2013. She has conducted a number of
CDIO introductory workshops for engineering and non-engineering programs, which expanded
the CDIO network to 8 RMUTs and universities in Asia. Natha graduated with a Bachelor of
Engineering in Industrial Engineering from Chulalongkorn University, Master of Science and
PhD in Engineering Management from University of Missouri-Rolla, USA.

Deachrut Jaithavil is a lecturer at the Department of Computer Engineering, Faculty of
Engineering, RMUTT. His pedagogical interest is design and development of computer
programming courses including digital electronics and microcomputers.

Corresponding author

Mr. Deachrut Jaithavil
Rajamangala University of Technology
Thanyaburi (RMUTT)
39 Village No. 1, Rangsit-nakornnayok
Road, Klong 6, Thanyaburi, Pathumthani,
Thailand 12110
deachrut.j@en.rmutt.ac.th

This work is licensed under a Creative
Commons Attribution-NonCommercial-
NoDerivs 4.0 International License.

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

